
Package: ruler (via r-universe)
September 21, 2024

Title Tidy Data Validation Reports

Version 0.3.0.9000

Description Tools for creating data validation pipelines and tidy
reports. This package offers a framework for exploring and
validating data frame like objects using 'dplyr' grammar of
data manipulation.

License MIT + file LICENSE

URL https://echasnovski.github.io/ruler/,

https://github.com/echasnovski/ruler

BugReports https://github.com/echasnovski/ruler/issues

Depends R (>= 3.4.0)

Imports dplyr (>= 0.8.0), keyholder, rlang, tibble, tidyr (>= 0.7.0),
magrittr, purrr (>= 1.0.0)

Suggests covr, knitr, rmarkdown, testthat

VignetteBuilder knitr

Encoding UTF-8

Roxygen list(markdown = TRUE, old_usage = TRUE)

RoxygenNote 7.2.3

Repository https://echasnovski.r-universe.dev

RemoteUrl https://github.com/echasnovski/ruler

RemoteRef HEAD

RemoteSha a17dd1313e07f2302fccc10b81432895b16653bd

Contents
ruler-package . 2
act_after_exposure . 3
any_breaker . 4
assert_any_breaker . 4

1

https://echasnovski.github.io/ruler/
https://github.com/echasnovski/ruler
https://github.com/echasnovski/ruler/issues

2 ruler-package

bind_exposures . 5
cell-pack . 6
column-pack . 8
data-pack . 9
expose . 10
exposure . 12
group-pack . 14
inside_punct . 15
packs_info . 15
row-pack . 17
rule-packs . 18
ruler-report . 19
rules . 20
spread_groups . 21

Index 23

ruler-package ruler: Rule Your Data

Description

ruler offers a set of tools for creating tidy data validation reports using dplyr grammar of data
manipulation. It is designed to be flexible and extendable in terms of creating rules and using their
output.

Details

The common workflow is:

• Define dplyr-style packs of rules for basic data units (data, group, column, row, cell) to obey.

• Expose some data to those rules. The result is the same data with possibly created exposure
attribute. Exposure contains information about applied packs and tidy data validation report.

• Use data and exposure to perform some actions: assert about rule breakers, impute data, re-
move outliers and so on.

To learn more about ruler browse vignettes with browseVignettes(package = "ruler"). The
preferred order is:

1. Design process and exposure format.

2. Rule packs.

3. Validation

Author(s)

Maintainer: Evgeni Chasnovski <evgeni.chasnovski@gmail.com> (ORCID)

https://dplyr.tidyverse.org
https://orcid.org/0000-0002-1617-4019

act_after_exposure 3

See Also

Useful links:

• https://echasnovski.github.io/ruler/

• https://github.com/echasnovski/ruler

• Report bugs at https://github.com/echasnovski/ruler/issues

act_after_exposure Act after exposure

Description

A wrapper for consistent application of some actions based on the data after exposure.

Usage

act_after_exposure(.tbl, .trigger, .actor)

Arguments

.tbl Result of exposure, i.e. data frame with exposure attribute.

.trigger Function which takes .tbl as argument and returns TRUE if some action needs
to be performed.

.actor Function which takes .tbl as argument and performs the action.

Details

Basically act_after_exposure() is doing the following:

• Check that .tbl has a proper exposure attribute.

• Compute whether to perform intended action by computing .trigger(.tbl).

• If trigger results in TRUE then .actor(.tbl) is returned. In other case .tbl is returned.

It is a good idea that .actor should be doing one of two things:

• Making side effects. For example throwing an error (if condition in .trigger is met), printing
some information and so on. In this case it should return .tbl to be used properly inside a
pipe.

• Changing .tbl based on exposure information. In this case it should return the imputed
version of .tbl.

See Also

any_breaker for trigger which returns TRUE in case any rule breaker is found in exposure.

assert_any_breaker for usage of act_after_exposure() in building data validation pipelines.

https://echasnovski.github.io/ruler/
https://github.com/echasnovski/ruler
https://github.com/echasnovski/ruler/issues

4 assert_any_breaker

Examples

exposure_printer <- function(.tbl) {
print(get_exposure(.tbl))
.tbl

}
mtcars_exposed <- mtcars %>%

expose(data_packs(. %>% dplyr::summarise(nrow_low = nrow(.) > 50))) %>%
act_after_exposure(any_breaker, exposure_printer)

any_breaker Is there any breaker in exposure?

Description

Function designed to be used as trigger in act_after_exposure(). Returns TRUE if exposure
attribute of .tbl has any information about data units not obeying the rules, i.e. rule breakers.

Usage

any_breaker(.tbl)

Arguments

.tbl Result of exposure, i.e. data frame with exposure attribute.

See Also

assert_any_breaker for implicit usage of any_breaker().

Examples

mtcars %>%
expose(data_packs(. %>% dplyr::summarise(nrow_low = nrow(.) > 50))) %>%
any_breaker()

assert_any_breaker Assert presence of rule breaker

Description

Function to assert if exposure resulted in detecting some rule breakers.

Usage

assert_any_breaker(.tbl, .type = "error", .silent = FALSE, ...)

bind_exposures 5

Arguments

.tbl Result of exposure, i.e. data frame with exposure attribute.

.type The type of assertion. Can be only one of "error", "warning" or "message".

.silent If TRUE no printing of rule breaker information is done.

... Arguments for printing rule breaker information.

Details

In case breaker presence this function does the following:

• In case .silent is FALSE print rows from exposure report corresponding to rule breakers.

• Make assertion of the chosen .type about breaker presence in exposure.

• Return .tbl (for using inside a pipe).

If there are no breakers only .tbl is returned.

See Also

any_breaker for checking of breaker presence in exposure result.

act_after_exposure for making general actions based in exposure result.

Examples

Not run:
mtcars %>%

expose(data_packs(. %>% dplyr::summarise(nrow_low = nrow(.) > 50))) %>%
assert_any_breaker()

End(Not run)

bind_exposures Bind exposures

Description

Function to bind several exposures into one.

Usage

bind_exposures(..., .validate_output = TRUE)

Arguments

... Exposures to bind.

.validate_output

Whether to validate with is_exposure() if the output is exposure.

6 cell-pack

Details

Note that the output might not have names in list-column fun in packs info, which depends on
version of dplyr package.

Examples

my_data_packs <- data_packs(
data_dims = . %>% dplyr::summarise(nrow_low = nrow(.) < 10),
data_sum = . %>% dplyr::summarise(sum = sum(.) < 1000)

)

ref_exposure <- mtcars %>%
expose(my_data_packs) %>%
get_exposure()

exposure_1 <- mtcars %>%
expose(my_data_packs[1]) %>%
get_exposure()

exposure_2 <- mtcars %>%
expose(my_data_packs[2]) %>%
get_exposure()

exposure_binded <- bind_exposures(exposure_1, exposure_2)

exposure_pipe <- mtcars %>%
expose(my_data_packs[1]) %>%
expose(my_data_packs[2]) %>%
get_exposure()

identical(exposure_binded, ref_exposure)

identical(exposure_pipe, ref_exposure)

cell-pack Cell rule pack

Description

Cell rule pack is a rule pack which defines a set of rules for cells, i.e. functions which convert cells
of interest to logical values. It should return a data frame with the following properties:

• Number of rows equals to number of rows for checked cells.

• Column names should be treated as concatenation of ’column name of check cell’ + ’sepa-
rator’ + ’rule name’

• Values indicate whether the cell follows the rule.

cell-pack 7

Details

This format is inspired by scoped variants of transmute().

The most common way to define cell pack is by creating a functional sequence containing one of:

• transmute_all(.funs = rules(...)).

• transmute_if(.predicate, .funs = rules(...)).

• transmute_at(.vars, .funs = rules(...)).

Note that (as of dplyr version 0.7.4) when only one column is transmuted, names of the output
don’t have a necessary structure. The ’column name of check cell’ is missing which results (after
exposure) into empty string in var column of validation report. The current way of dealing with
this is to name the input column (see examples).

Using rules()

Using rules() to create list of functions for scoped dplyr "mutating" verbs (such as summarise_all()
and transmute_all()) is recommended because:

• It is a convenient way to ensure consistent naming of rules without manual name.

• It adds a common prefix to all rule names. This helps in defining separator as prefix surrounded
by any number of non-alphanumeric values.

Note about rearranging rows

Note that during exposure packs are applied to keyed object with id key. So they can rearrange rows
as long as it is done with functions supported by keyholder. Rows will be tracked and recognized
as in the original data frame of interest.

See Also

Data pack, group pack, column pack, row pack.

Examples

cell_outlier_rules <- . %>% dplyr::transmute_at(
c("disp", "qsec"),
rules(z_score = abs(. - mean(.)) / sd(.) > 1)

)

cell_packs(outlier = cell_outlier_rules)

Dealing with one column edge case
improper_pack <- . %>% dplyr::transmute_at(

dplyr::vars(vs),
rules(improper_is_neg = . < 0)

)

proper_pack <- . %>% dplyr::transmute_at(
dplyr::vars(vs = vs),
rules(proper_is_neg = . < 0)

8 column-pack

)

mtcars[1:2,] %>%
expose(cell_packs(improper_pack, proper_pack)) %>%
get_report()

column-pack Column rule pack

Description

Column rule pack is a rule pack which defines a set of rules for columns as a whole, i.e. functions
which convert columns of interest to logical values. It should return a data frame with the following
properties:

• Number of rows equals to one.

• Column names should be treated as concatenation of ’check column name’ + ’separator’ +
’rule name’.

• Values indicate whether the column as a whole follows the rule.

Details

This format is inspired by dplyr’s scoped variants of summarise() applied to non-grouped data.

The most common way to define column pack is by creating a functional sequence with no grouping
and ending with one of:

• summarise_all(.funs = rules(...)).

• summarise_if(.predicate, .funs = rules(...)).

• summarise_at(.vars, .funs = rules(...)).

Note that (as of dplyr version 0.7.4) when only one column is summarised, names of the output
don’t have a necessary structure. The ’check column name’ is missing which results (after exposure)
into empty string in var column of validation report. The current way of dealing with this is to name
the input column (see examples).

Using rules()

Using rules() to create list of functions for scoped dplyr "mutating" verbs (such as summarise_all()
and transmute_all()) is recommended because:

• It is a convenient way to ensure consistent naming of rules without manual name.

• It adds a common prefix to all rule names. This helps in defining separator as prefix surrounded
by any number of non-alphanumeric values.

See Also

Data pack, group pack, row pack, cell pack.

data-pack 9

Examples

Validating present columns
numeric_column_rules <- . %>% dplyr::summarise_if(

is.numeric,
rules(mean(.) > 5, sd(.) < 10)

)
character_column_rules <- . %>% dplyr::summarise_if(

is.character,
rules(. %in% letters[1:4])

)

col_packs(
num_col = numeric_column_rules,
chr_col = character_column_rules

)

Dealing with one column edge case
improper_pack <- . %>% dplyr::summarise_at(

dplyr::vars(vs),
rules(improper_is_chr = is.character)

)

proper_pack <- . %>% dplyr::summarise_at(
dplyr::vars(vs = vs),
rules(proper_is_chr = is.character)

)

mtcars %>%
expose(col_packs(improper_pack, proper_pack)) %>%
get_report()

data-pack Data rule pack

Description

Data rule pack is a rule pack which defines a set of rules for data as a whole, i.e. functions which
convert data to logical values. It should return a data frame with the following properties:

• Number of rows equals to one.

• Column names should be treated as rule names.

• Values indicate whether the data as a whole follows the rule.

Details

This format is inspired by dplyr’s summarise() applied to non-grouped data.

The most common way to define data pack is by creating a functional sequence with no grouping
and ending with summarise(...).

10 expose

See Also

Group pack, Column pack, row pack, cell pack.

Examples

data_dims_rules <- . %>%
dplyr::summarise(
nrow_low = nrow(.) > 10,
nrow_up = nrow(.) < 20,
ncol_low = ncol(.) > 5,
ncol_up = ncol(.) < 10

)
data_na_rules <- . %>%

dplyr::summarise(all_not_na = Negate(anyNA)(.))

data_packs(
data_nrow = data_dims_rules,
data_na = data_na_rules

)

expose Expose data to rule packs

Description

Function for applying rule packs to data.

Usage

expose(.tbl, ..., .rule_sep = inside_punct("\\._\\."),
.remove_obeyers = TRUE, .guess = TRUE)

Arguments

.tbl Data frame of interest.

... Rule packs. They can be in pure form or inside a list (at any depth).

.rule_sep Regular expression used as separator between column and rule names in col
packs and cell packs.

.remove_obeyers

Whether to remove elements which obey rules from report.

.guess Whether to guess type of unsupported rule pack type (see Details).

expose 11

Details

expose() applies all supplied rule packs to data, creates an exposure object based on results and
stores it to attribute ’exposure’. It is guaranteed that .tbl is not modified in any other way in order
to use expose() inside a pipe.

It is a good idea to name all rule packs: explicitly in ... (if they are supplied not inside list) or
during creation with respective rule pack function. In case of missing name it is imputed based on
possibly existing exposure attribute in .tbl and supplied rule packs. Imputation is similar to one in
rules() but applied to every pack type separately.

Default value for .rule_sep is the regular expression characters ._. surrounded by non alphanumeric characters.
It is picked to be used smoothly with dplyr’s scoped verbs and rules() instead of pure list. In most
cases it shouldn’t be changed but if needed it should align with .prefix in rules().

Value

A .tbl with possibly added ’exposure’ attribute containing the resulting exposure. If .tbl already
contains ’exposure’ attribute then the result is binded with it.

Guessing

To work properly in some edge cases one should specify pack types with appropriate function.
However with .guess equals to TRUE expose will guess the pack type based on its output after
applying to .tbl. It uses the following features:

• Presence of non-logical columns: if present then the guess is group pack. Grouping columns
are guessed as all non-logical. This works incorrectly if some grouping column is logical: it
will be guessed as result of applying the rule. Note that on most occasions this edge case will
produce error about grouping columns define non-unique levels.

• Combination of whether number of rows equals 1 (n_rows_one) and presence of .rule_sep
in all column names (all_contain_sep). Guesses are:

– Data pack if n_rows_one == TRUE and all_contain_sep == FALSE.
– Column pack if n_rows_one == TRUE and all_contain_sep == TRUE.
– Row pack if n_rows_one == FALSE and all_contain_sep == FALSE. This works incor-

rectly if output has one row which is checked. In this case it will be guessed as data
pack.

– Cell pack if n_rows_one == FALSE and all_contain_sep == TRUE. This works incor-
rectly if output has one row in which cells are checked. In this case it will be guessed as
column pack.

Examples

my_rule_pack <- . %>% dplyr::summarise(nrow_neg = nrow(.) < 0)
my_data_packs <- data_packs(my_data_pack_1 = my_rule_pack)

These pipes give identical results
mtcars %>%

expose(my_data_packs) %>%
get_report()

12 exposure

mtcars %>%
expose(my_data_pack_1 = my_rule_pack) %>%
get_report()

This throws an error because no pack type is specified for my_rule_pack
Not run:
mtcars %>% expose(my_data_pack_1 = my_rule_pack, .guess = FALSE)

End(Not run)

Edge cases against using 'guess = TRUE' for robust code
group_rule_pack <- . %>%

dplyr::mutate(vs_one = vs == 1) %>%
dplyr::group_by(vs_one, am) %>%
dplyr::summarise(n_low = dplyr::n() > 10)

group_rule_pack_dummy <- . %>%
dplyr::mutate(vs_one = vs == 1) %>%
dplyr::group_by(mpg, vs_one, wt) %>%
dplyr::summarise(n_low = dplyr::n() > 10)

row_rule_pack <- . %>% dplyr::transmute(neg_row_sum = rowSums(.) < 0)
cell_rule_pack <- . %>% dplyr::transmute_all(rules(neg_value = . < 0))

Only column 'am' is guessed as grouping which defines non-unique levels.
Not run:
mtcars %>%

expose(group_rule_pack, .remove_obeyers = FALSE, .guess = TRUE) %>%
get_report()

End(Not run)

Values in `var` should contain combination of three grouping columns but
column 'vs_one' is guessed as rule. No error is thrown because the guessed
grouping column define unique levels.
mtcars %>%

expose(group_rule_pack_dummy, .remove_obeyers = FALSE, .guess = TRUE) %>%
get_report()

Results should have in column 'id' value 1 and not 0.
mtcars %>%

dplyr::slice(1) %>%
expose(row_rule_pack) %>%
get_report()

mtcars %>%
dplyr::slice(1) %>%
expose(cell_rule_pack) %>%
get_report()

exposure Exposure

exposure 13

Description

Exposure is a result of exposing data to rules. It is implemented with S3 class exposure which is
a list of the following structure: packs_info - a packs_info object; report - tidy data validation
report.

Usage

is_exposure(.x)

get_exposure(.object)

remove_exposure(.object)

Arguments

.x Object to test.

.object Object to get or remove exposure attribute from.

Value

get_exposure() returns object if it is exposure and its attribute ’exposure’ otherwise.

remove_exposure() returns object with removed attributed ’exposure’.

Examples

my_col_packs <- col_packs(
col_sum_props = . %>% dplyr::summarise_all(
rules(

col_sum_low = sum(.) > 100,
col_sum_high = sum(.) < 1000

)
)

)
mtcars_exposed <- mtcars %>% expose(my_col_packs)
mtcars_exposure <- mtcars_exposed %>% get_exposure()

is_exposure(mtcars_exposure)

identical(remove_exposure(mtcars_exposed), mtcars)

identical(get_exposure(mtcars_exposure), mtcars_exposure)

14 group-pack

group-pack Group rule pack

Description

Group rule pack is a rule pack which defines a set of rules for groups of rows as a whole, i.e.
functions which convert groups of interest to logical values. It should return a data frame with the
following properties:

• There should be present some columns which combined values uniquely describe group. They
should be defined during creation with group_packs().

• Number of rows equals to number of checked groups.
• Names of non-grouping columns should be treated as rule names.
• Values indicate whether the group as a whole follows the rule.

Details

This format is inspired by dplyr’s summarise() applied to grouped data.

The most common way to define data pack is by creating a functional sequence with grouping and
ending with summarise(...).

Interpretation

Group pack output is interpreted in the following way:

• All grouping columns are united with delimiter .group_sep (which is an argument of group_packs()).
• Levels of the resulting column are treated as names of some new variables which should be

exposed as a whole. Names of non-grouping columns are treated as rule names. They are
transformed in column pack format and interpreted accordingly.

Exposure result of group pack is different from others in a way that column var in exposure report
doesn’t represent the actual column in data.

See Also

Data pack, Column pack, row pack, cell pack.

Examples

vs_am_rules <- . %>%
dplyr::group_by(vs, am) %>%
dplyr::summarise(
nrow_low = n(.) > 10,
nrow_up = n(.) < 20,
rowmeans_low = rowMeans(.) > 19

)

group_packs(vs_am = vs_am_rules, .group_vars = c("vs", "am"))

inside_punct 15

inside_punct Inside punctuation regular expression

Description

Function to construct regular expression of form: ’non alpha-numeric characters’ + ’some charac-
ters’ + ’non alpha-numeric characters’.

Usage

inside_punct(.x = "\\._\\.")

Arguments

.x Middle characters to be put between non alpha-numeric characters.

Examples

inside_punct()

inside_punct("abc")

packs_info Packs info

Description

An S3 class packs_info to represent information about packs in exposure. It is a tibble with the
following structure:

• name <chr> : Name of the pack.

• type <chr> : Pack type.

• fun <list> : List (preferably unnamed) of rule pack functions.

• remove_obeyers <lgl> : value of .remove_obeyers argument of expose() with which pack
was applied.

Usage

is_packs_info(.x, .skip_class = FALSE)

get_packs_info(.object)

16 packs_info

Arguments

.x Object to test.

.skip_class Whether to skip checking inheritance from packs_info.

.object Object to get packs_info value from exposure attribute.

Details

To avoid possible confusion it is preferred (but not required) that list-column fun doesn’t have
names. Names of packs are stored in name column. During exposure fun is always created without
names.

Value

get_packs_info() returns packs_info attribute of object if it is exposure and of its ’exposure’
attribute otherwise.

Examples

my_row_packs <- row_packs(
row_mean_props = . %>% dplyr::transmute(row_mean = rowMeans(.)) %>%
dplyr::transmute(

row_mean_low = row_mean > 20,
row_mean_high = row_mean < 60

),
row_outlier = . %>% dplyr::transmute(row_sum = rowSums(.)) %>%

dplyr::transmute(
not_row_outlier = abs(row_sum - mean(row_sum)) / sd(row_sum) < 1.5

)
)
my_data_packs <- data_packs(

data_dims = . %>% dplyr::summarise(
nrow = nrow(.) == 32,
ncol = ncol(.) == 5

)
)

mtcars_exposed <- mtcars %>%
expose(my_data_packs, .remove_obeyers = FALSE) %>%
expose(my_row_packs)

mtcars_exposed %>% get_packs_info()

mtcars_exposed %>%
get_packs_info() %>%
is_packs_info()

row-pack 17

row-pack Row rule pack

Description

Row rule pack is a rule pack which defines a set of rules for rows as a whole, i.e. functions which
convert rows of interest to logical values. It should return a data frame with the following properties:

• Number of rows equals to number of checked rows.

• Column names should be treated as rule names.

• Values indicate whether the row as a whole follows the rule.

Details

This format is inspired by dplyr’s transmute().

The most common way to define row pack is by creating a functional sequence containing transmute(...).

Note about rearranging rows

Note that during exposure packs are applied to keyed object with id key. So they can rearrange rows
as long as it is done with functions supported by keyholder. Rows will be tracked and recognized
as in the original data frame of interest.

See Also

Data pack, group pack, column pack, cell pack.

Examples

some_row_mean_rules <- . %>%
dplyr::slice(1:3) %>%
dplyr::mutate(row_mean = rowMeans(.)) %>%
dplyr::transmute(

row_mean_low = row_mean > 10,
row_mean_up = row_mean < 20

)
all_row_sum_rules <- . %>%

dplyr::mutate(row_sum = rowSums(.)) %>%
dplyr::transmute(row_sum_low = row_sum > 30)

row_packs(
some_row_mean_rules,
all_row_sum_rules

)

18 rule-packs

rule-packs Create rule packs

Description

Functions for creating different kinds of rule packs. Rule is a function which converts data unit
of interest (data, group, column, row, cell) to logical value indicating whether this object satisfies
certain condition. Rule pack is a function which combines several rules into one functional block.
It takes a data frame of interest and returns a data frame with certain structure and column naming
scheme. Types of packs differ in interpretation of their output.

Usage

data_packs(...)

group_packs(..., .group_vars, .group_sep = ".")

col_packs(...)

row_packs(...)

cell_packs(...)

Arguments

... Functions which define packs. They can be in pure form or inside a list (at any
depth).

.group_vars Character vector of names of grouping variables.

.group_sep String to be used as separator when uniting grouping levels for var column in
exposure report.

Details

These functions convert ... to list, apply rlang’s squash() and add appropriate classes (group_packs()
also adds necessary attributes). Also they are only constructors and do not check for validity of cer-
tain pack. Note that it is allowed for elements of ... to not have names: they will be computed
during exposure. However it is a good idea to manually name packs.

Value

data_packs() returns a list of what should be data rule packs, group_packs() - group rule packs,
col_packs() - column rule packs, row_packs() - row rule packs, cell_packs() - cell rule packs.

ruler-report 19

ruler-report Tidy data validation report

Description

A tibble representing the data validation result of certain data units in tidy way:

• pack <chr> : Name of rule pack from column ’name’ of corresponding packs_info object.

• rule <chr> : Name of the rule defined in rule pack.

• var <chr> : Name of the variable which validation result is reported. Value ’.all’ is reserved
and interpreted as ’all columns as a whole’. Note that var doesn’t always represent the actual
column in data frame (see group packs).

• id <int> : Index of the row in tested data frame which validation result is reported. Value 0 is
reserved and interpreted as ’all rows as a whole’.

• value <lgl> : Whether the described data unit obeys the rule.

Usage

is_report(.x, .skip_class = FALSE)

get_report(.object)

Arguments

.x Object to test.

.skip_class Whether to skip checking inheritance from ruler_report.

.object Object to get report value from exposure attribute.

Details

There are four basic combinations of var and id values which define five basic data units:

• var == '.all' and id == 0: Data as a whole.

• var != '.all' and id == 0: Group (var shouldn’t be an actual column name) or column (var
should be an actual column name) as a whole.

• var == '.all' and id != 0: Row as a whole.

• var != '.all' and id != 0: Described cell.

Value

get_report() returns report element of object if it is exposure and of its ’exposure’ attribute
otherwise.

20 rules

Examples

my_row_packs <- row_packs(
row_mean_props = . %>% dplyr::transmute(row_mean = rowMeans(.)) %>%
dplyr::transmute(

row_mean_low = row_mean > 20,
row_mean_high = row_mean < 60

),
row_outlier = . %>% dplyr::transmute(row_sum = rowSums(.)) %>%

dplyr::transmute(
not_row_outlier = abs(row_sum - mean(row_sum)) / sd(row_sum) < 1.5

)
)
my_data_packs <- data_packs(

data_dims = . %>% dplyr::summarise(
nrow = nrow(.) == 32,
ncol = ncol(.) == 5

)
)

mtcars_exposed <- mtcars %>%
expose(my_data_packs, .remove_obeyers = FALSE) %>%
expose(my_row_packs)

mtcars_exposed %>% get_report()

mtcars_exposed %>%
get_report() %>%
is_report()

rules Create a list of rules

Description

rules() is a function designed to create input for .funs argument of scoped dplyr "mutating"
verbs (such as summarise_all() and transmute_all()). It converts bare expressions with . as input
into formulas and repairs names of the output.

Usage

rules(..., .prefix = "._.")

Arguments

... Bare expression(s) with . as input.

.prefix Prefix to be added to function names.

spread_groups 21

Details

rules() repairs names by the following algorithm:

• Absent names are replaced with the ’rule__\ind\’ where \ind\ is the index of function position
in the

• .prefix is added at the beginning of all names. The default is ._. . It is picked for its
symbolism (it is the Morse code of letter ’R’) and rare occurrence in names. In those rare
cases it can be manually changed but this will not be tracked further. Note that it is a good
idea for .prefix to be syntactic, as dplyr will force tibble names to be syntactic. To check
if string is "good", use it as input to make.names(): if output equals that string than it is a
"good" choice.

Examples

`rules()` accepts bare expression calls with `.` as input, which is not
possible with advised `list()` approach of `dplyr`
dplyr::summarise_all(mtcars[, 1:2], rules(sd, "sd", sd(.), ~ sd(.)))

dplyr::summarise_all(mtcars[, 1:2], rules(sd, .prefix = "a_a_"))

Use `...` in `summarise_all()` to supply extra arguments
dplyr::summarise_all(data.frame(x = c(1:2, NA)), rules(sd), na.rm = TRUE)

spread_groups Spread grouping columns

Description

Function that is used during interpretation of group pack output. It converts grouped summary into
column pack format.

Usage

spread_groups(.tbl, ..., .group_sep = ".", .col_sep = "._.")

Arguments

.tbl Data frame with result of grouped summary.

... A selection of grouping columns (as in tidyr::unite()).

.group_sep A string to be used as separator of grouping levels.

.col_sep A string to be used as separator in column pack.

Details

Multiple grouping variables are converted to one with tidyr::unite() and separator .group_sep.
New values are then treated as variable names which should be validated and which represent the
group data as a whole.

22 spread_groups

Value

A data frame in column pack format.

Examples

mtcars_grouped_summary <- mtcars %>%
dplyr::group_by(vs, am) %>%
dplyr::summarise(n_low = dplyr::n() > 6, n_high = dplyr::n() < 10)

spread_groups(mtcars_grouped_summary, vs, am)

spread_groups(mtcars_grouped_summary, vs, am, .group_sep = "__")

spread_groups(mtcars_grouped_summary, vs, am, .col_sep = "__")

Index

about applied packs, 2
act_after_exposure, 3, 5
act_after_exposure(), 4
actions, 2
any_breaker, 3, 4, 5
appropriate function, 11
assert about rule breakers, 2
assert_any_breaker, 3, 4, 4

bind_exposures, 5

Cell pack, 11
cell pack, 8, 10, 14, 17
cell packs, 10
cell rule packs, 18
cell-pack, 6
cell_packs (rule-packs), 18
col packs, 10
col_packs (rule-packs), 18
Column pack, 10, 11, 14
column pack, 7, 14, 17, 21, 22
column rule packs, 18
column-pack, 8

Data pack, 7, 8, 11, 14, 17
data rule packs, 18
data-pack, 9
data_packs (rule-packs), 18
detecting, 4
dplyr, 6

Expose, 2
expose, 10
expose(), 15
exposing, 13
exposure, 2–5, 7, 8, 11, 12, 15, 16
exposure report, 14, 18

functional sequence, 7–9, 14, 17
functions supported by keyholder, 7, 17

get_exposure (exposure), 12
get_packs_info (packs_info), 15
get_report (ruler-report), 19
Group pack, 10
group pack, 7, 8, 11, 17, 21
group packs, 19
group rule packs, 18
group-pack, 14
group_packs (rule-packs), 18
group_packs(), 14

id key, 7, 17
inside_punct, 15
is_exposure (exposure), 12
is_exposure(), 5
is_packs_info (packs_info), 15
is_report (ruler-report), 19

keyed object, 7, 17

Pack type, 15
packs, 2
packs (rule-packs), 18
packs info, 6
packs_info, 13, 15, 19
pipe, 3, 5, 11

remove_exposure (exposure), 12
report, 5
Row pack, 11
row pack, 7, 8, 10, 14
row rule packs, 18
row-pack, 17
row_packs (rule-packs), 18
rule pack, 6, 8, 9, 14, 17
rule-packs, 18
ruler (ruler-package), 2
ruler-package, 2
ruler-report, 19
rules, 20

23

24 INDEX

rules(), 7, 8, 11

scoped variants of summarise(), 8
scoped variants of transmute(), 7
scoped verbs, 11
spread_groups, 21
squash(), 18
summarise(), 9, 14
summarise_all(), 7, 8, 20
summary, 21
syntactic, 21

tidy data validation report, 2, 13
tidyr::unite(), 21
transmute(), 17
transmute_all(), 7, 8, 20

united, 14

validation report, 7, 8

	ruler-package
	act_after_exposure
	any_breaker
	assert_any_breaker
	bind_exposures
	cell-pack
	column-pack
	data-pack
	expose
	exposure
	group-pack
	inside_punct
	packs_info
	row-pack
	rule-packs
	ruler-report
	rules
	spread_groups
	Index

